Skip to main content Skip to secondary navigation
Journal Article

Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer

Quantum networks are likely to have a profound impact on the way we compute and communicate in the future. In order to wire together superconducting quantum processors over kilometer-scale distances, we need transducers that can generate entanglement between the microwave and optical domains with high fidelity. We present an integrated electro-optic transducer that combines low-loss lithium niobate photonics with superconducting microwave resonators on a sapphire substrate. Our triply resonant device operates in a dilution refrigerator and converts microwave photons to optical photons with an on-chip efficiency of 6.6 x 10-6 and a conversion bandwidth of 20 MHz. We discuss design trade-offs in this device, including strategies to manage acoustic loss, and outline ways to increase the conversion efficiency in the future. 

Author(s)
Timothy P. McKenna*
Jeremy D. Witmer*
Rishi N. Patel
Wentao Jiang
Raphael Van Laer
Patricio Arrangoiz-Arriola
E. Alex Wollack
Jason F. Herrmann
Amir H. Safavi-Naeini
Journal Name
Optica
Publication Date
December 20, 2020
DOI
10.1364/OPTICA.397235