Journal Article
Mechanical Purcell filters for microwave quantum machines
In circuit quantum electrodynamics, measuring the state of a superconducting qubit introduces a loss channel, which can enhance spontaneous emission through the Purcell effect, thus decreasing the qubit lifetime. This decay can be mitigated by performing the measurement through a Purcell filter, which strongly suppresses signal propagation at the qubit transition frequency. If the filter is also well-matched at the readout cavity frequency, it will protect the qubit from decoherence channels without sacrificing measurement bandwidth. We propose and analyze design for a mechanical Purcell filter, which we also fabricate and characterize at room temperature. The filter is composed of an array of nanomechanical resonators in thin-film lithium niobate, connected in a ladder topology, with series and parallel resonances arranged to produce a bandpass response. Their modest footprint, steep band edges, and lack of cross talk make these filters an appealing alternative to analogous electromagnetic versions currently used in microwave quantum machines. |
Journal Name
Appl. Phys. Lett.
Publication Date
December 23, 2019
DOI
10.1063/1.5111151